Eventually Perfect Failure Detector
Interface of EPFD

- **Module:**
 - Name: EventuallyPerfectFailureDetector, instance $\diamond P$

- **Events:**
 - Indication: $\langle \diamond P, \text{suspect} \mid p_i \rangle$
 - Notifies that node p_i is suspected to have crashed
 - Indication: $\langle \diamond P, \text{restore} \mid p_i \rangle$
 - Notifies that node p_i is not suspected anymore

- **Properties:**
 - $PFD1$ (*strong completeness*)
 - $PFD2$ (*eventual strong accuracy*). Eventually, no correct node is suspected by any correct node.
Implementing \diamond P

- Assume partially synchronous system
 - Eventually some bounds exist

- Each node every γ time units
 - Send <heartbeat> to all nodes

- Each node waits T time units
 - If did not get <heartbeat> from p_i
 - Indicate <suspect | p_i> if p_i is not in suspected
 - Put p_i in suspected set
 - If get HB from p_i, and p_i is in suspected
 - Indicate <restore | p_i> and remove p_i from suspected
 - Increase timeout T
Correctness of ◊P

- **EPFD1 (strong completeness)**
 - Same as before

- **EPFD2 (eventual strong accuracy)**
 - Each time p is inaccurately suspected by a correct q
 - Timeout T is increased at q
 - Eventually system becomes synchronous, and T becomes larger than the unknown bound δ ($T > \gamma + \delta$)
 - q will receive HB on time, and never suspect p again